On Pietsch measures for summing operators and dominated polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Uniformly Dominated Sets of Summing Operators

for allx ∈X and all T ∈ . Since the appearance of Grothendieck-Pietsch’s domination theorem for p-summing operators, there is a great interest in finding out the structure of uniformly dominated sets. We will denote by p(μ) the set of all operators T ∈ Πp(X,Y) satisfying (1.1) for all x ∈ X. It is easy to prove that p(μ) is absolutely convex, closed, and bounded (for the p-summing norm). In [4]...

متن کامل

On summing operators on JB * - triples

In this paper we introduce 2-JB*-triple-summing operators on real and complex JB*-triples. These operators generalize 2-C*-summing operators on C*-algebras. We also obtain a Pietsch’s factorization theorem in the setting of 2-JB*-triple-summing operators on JB*-triples.

متن کامل

LIPSCHITZ p-SUMMING OPERATORS

The notion of Lipschitz p-summing operator is introduced. A non linear Pietsch factorization theorem is proved for such operators and it is shown that a Lipschitz p-summing operator that is linear is a p-summing operator in the usual sense.

متن کامل

REMARKS ON LIPSCHITZ p-SUMMING OPERATORS

In this note, a nonlinear version of the Extrapolation Theorem is proved and as a corollary, a nonlinear version of the Grothendieck’s Theorem is presented. Finally, we prove that if T : X → H is Lipschitz with X being a pointed metric space and T (0) = 0 such that T∣H∗ is q-summing (1 ≤ q <∞), then T is Lipschitz 1-summing.

متن کامل

A Composition Theorem for Multiple Summing Operators

We prove that the composition S(u1, . . . , un) of a multilinear multiple 2-summing operator S with 2-summing linear operators uj is nuclear, generalizing a linear result of Grothendieck.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear and Multilinear Algebra

سال: 2013

ISSN: 0308-1087,1563-5139

DOI: 10.1080/03081087.2013.794233